Part A

Request for a

Connection Impact Assessment (CIA) Review/Update, and for Generators with project size larger than 10 kW To Connect Embedded Generation to Oakville Hydro's Electrical Distribution System

Please highlight in yellow any information below that has changed since previously providing the information.

Section 1: General Connection Information

Note: ALL of the information in "Section 1: General Connection Information" must be completed in full. Failure to provide complete information may delay the processing of the data.

All technical documents must be signed and sealed by a licensed Ontario Professional Engineer.

Da	te: (dd/mm/yy	ууу)				
1.	Project Name:					
2.	Project Dates:	Proposed Sta Proposed In-	art of Construction: Service:		dd/mm/yyyy) dd/mm/yyyy)	
3.	Project Size:	Number of Pl	nits ating of Each Unit nases (1 or 3) tal Capacity			
4.	Project Location:	Addre	ss:			
5.	Oakville Hydro Ac	count Numbe	r (if applicable):			
6.	Project Informatio	n:				
Pro	oject Developer:					
Со	ntact Person:					
Ма	iling Address:					
Telephone:						
Fax:						
Em	ail					

Project Owner (if not same as Project Developer):

Company/Person:	
Contact Person:	
Mailing Address:	
Telephone:	
Fax:	
Email	

Engineering Consultant (Electrical)

Company/Person:	
Contact Person:	
Mailing Address:	
Telephone:	
Fax:	
Email	
8. Project Type: Wind Turbine	
Diesel Engin	e 🔄 Gas Turbine 🔄 Fuel Cell 🔄 Biomass
Co-generatio	n/CHP (Combined Heat & Power)
	c Crossiful)
	e Specify)
9. Mode of Operation:	
24 hour or Base Load	Peak Period Only Load Displacement
Emergency Backup	
Will Emergency Backup generation	ator be synchronized to Oakville Hydro's system at any time
Yes No	Other, please specify
10. Intent of Generation: Sale of Power Load Dis	splacement

11. Location and Site Plan

Provide Site Plan with approximate line routings for connection to nearby Oakville Hydro facilities. The Site Plan should include roads, concession and lot numbers and nearby power lines.

Drawing / Sketch No. _____,

Rev. _____

12. Proposed connection voltage to Oakville Hydro's distribution system (if known) : _____ kV

Section 2: Connection Impact Assessment Information

Note:

- (a) It is important that the Generator provide ALL the information requested below, if applicable. All information is required to complete the first step of the process to move to the new Queue structure. Indicate "Not Applicable" where appropriate.
- (b) In certain circumstances, Oakville Hydro may require additional information to conduct the Connection Impact Assessment. Should this be the case the Generator will be duly advised.

Provide detailed and updated SLD of the EG facility including the interface point to the Oakville Hydro distribution system. This drawing shall include as a minimum:

- Electrical equipment at EG's facilities, their principal ratings, impedances, winding configurations, neutral grounding methods etc.
- Protective relaying, synchronizing and revenue metering arrangements. The device • numbers should be in accordance with those adopted in the ANSI / IEEE Standard C37.2 -1979: IEEE Standard Electrical Power System Device Function Numbers.

The SLD shall include the following, as applicable:

- Disconnecting device at the interface (connection) point with the Oakville Hydro distribution system
- Load break switches
- Fuses
- Circuit breakers
- Interface step-up transformer
- Intermediate transformer(s)
- CTs and VTs (quantity, location, connection, ratio)
- Generators (rotating / static)
- Power factor correction capacitors and their switching arrangements (particularly for induction units)
- Motors
- Power cables
- Surge arresters
- Any other relevant electrical equipment. _
- SLD Drawing Number: _____, Rev.____, Attached Mailed Separately

Generator Facility Fault Contributions for Faults at the Interface Point/PCC

All values to be at the nominal connection voltage to Oakville Hydro's distribution system, i.e. the high voltage side of the Facility interface (step-up) transformer.

Maximum Symmetrical (all generators online)

- Three phase fault kΑ - Phase-to-phase fault kΑ kΑ
- Single Phase to ground fault

2. Generator Characteristics:

- a. Number of generating unit(s):
- Manufacturer / Type or Model No. b

с.	Rated capacity of each unit		
	Gross	kW	kVA
	Net	kW	kVA
	If unit outputs are different, please fill in additional	sheets to provide the informatic	on.
d.	Type of generating unit:	_	
	Synchronous Induction	Static Power Converters ((SPC)
	Other, please specify		
e.	Rated frequency Hz		
f.	Number of phases one three		
g.	For Synchronous Units:		
9.			
	i) Generation voltage kV ii) Rated current A		
	iii) Rated power factor of generating unit (s)	0.0	
	iv) Type and characteristics of exciter	p.c	
	v) Minimum power limit for stable operation	kW	
	vi) Unsaturated reactances on: kVA bas	sekV base	
	Direct axis synchronous reactance, Xd	pu	
	Direct axis transient reactance, Xd'	pu	
	Direct axis subtransient reactance, Xd"	pu	
	Negative sequence reactance, X2	pu	
	Zero sequence reactance, X0	pu	
,			
VII) Limits of range of reactive power		
	Lagging (over-excited)	kVAR	
	Leading (under-excited)	kVAR	
	viii) Provide a plot of generator capability curve		
	(MW output vs MVAR)		
	Document Number:	, Rev	,
	Bocument Number.	, nev	·
h.	For Induction Units:		
	i) Generation voltage	kV	
	ii) Rated design power factor	p.u	
	iii) Rated speed	RPM	
	iv) Slip regulation interval	%	
	v) Rated slip	%	
	vi) Actual power factor at delivery point (after p.f. co	prrection):	
	- Full output	p.u.	
	- No output	p.u.	
	vii) Generator reactive power requirements:		
	- Full output	kVAR	
	- No output	kVAR	
	viii) Total power factor correction installed	kVAR	
	- Number of regulating steps		
	- Power factor correction switched per step	kVAR	
	- Power factor correction capacitors are automati	<u> </u>	
	switched off when generator breaker opens	Yes N	0
	ix) Starting inrush current limited to		
	(multiple of full load current)	p.u.	
	x) Locked rotor current (at rated voltage)	p.u.	
	xi) Fault current vs time curves (for various types of		
	faults near the generator)	Dwg No	

i.	For SPC / Inverter type units: V i) Terminal voltage V ii) Line - interactive type (i.e. intended for parallel operation with electric utility) Yes iii) Power factor Yes iv) Battery backup provided Yes v) Maximum fault current for terminal faults A vi) Standards according to which built Doc. No
3.	Interface Step-Up Transformer Characteristics:
a. b. c. d.	Transformer rating kVA Manufacturer kV Nominal voltage of high voltage winding kV Lightning impulse level of high kV
e. f. g. h.	voltage winding, full wave kV Nominal voltage of low voltage winding kV Number of phases
i.	Impedances on: kVA base kV base
j. Imr	R:p.u. X:p.u. High voltage winding connection Idelta Grounding method of star connected high voltage winding neutral Idelta Solid Idelta Deedance: RX ohms Idelta
k.	
l. m.	Tapping range, location and type of tap changer Expected tap settings HV kV, LV kV
	te: The term 'High Voltage' refers to the connection voltage to LDC's distribution system and w Voltage' refers to the generation or any other intermediate voltage.
4.	Intermediate Transformer Characteristics (if applicable):
a. b. c.	Transformer ratingkVA Manufacturer Nominal voltage of high voltage windingkV
d. e.	Nominal voltage of low voltage winding kV High voltage winding connection delta Grounding method of star connected high voltage winding neutral star Solid Ungrounded Impedance: RX ohms
f.	Low voltage winding connection delta star Grounding method of star connected low voltage winding neutral Solid Ungrounded Impedance: RX
g. h.	Impedances on kVA base kV base kV base p.u. X: p.u. Tapping range, location and type of tap changer

i. Expected tap settings HV______kV, LV ______kV

Note: The term 'High Voltage' refers to the intermediate voltage that is input to the interface step-up transformer, and 'Low Voltage' refers to the generation voltage.

Note:

(a) The term "High Voltage", used above, refers to the intermediate voltage that is input to the interface step-up transformer, and "Low Voltage", used above, refers to the generation voltage.

5. Generating Facility Load Information

- a. Maximum continuous load:
 - Total: _____ kVA _____ kW
- Generator Auxiliary Load Only: _____kVA ____kW
 b. Maximum start up load: _____kVA ____kW
 c. Largest motor size that would be started: _____ HP _____kW kW
- d. Maximum inrush current of the motor (multiple of full-load current): _____ p.u.
- e. For load displacement generators:
 - Max. present load at Generator's facility: _____ kVA _____ kW
 - Max. future load at Generator's facility (excluding Auxiliary Loads): • kVA _____kW
 - Indicate the means by which injection of power into Oakville Hydro's system will be • prevented.

6. Operation Information:

- Annual Capacity Factor: _____ % •
- Prospective number of annual scheduled starts / stops, and timing:

7. Expected Monthly Generation, Consumption and Output From the Facility:

Expected:	Total Generation		Total Internal Consumption		Total Output (To Oakville Hydro's Distribution System) (a-b)*	
	kWh	Peak kW	kWh	Peak kW	kWh	Peak kW
January						
February						
March						
April						
May						
June						
July						
August						
September						
October						
November						
December						

This value would be negative when the generators are not in operation or when the internal * consumption exceeds generation.

8. Protection Design, Philosophy and Logic

- Provide a document describing the protection philosophy for detecting and clearing: •
- Internal faults within the EG facility;
- External phase and ground faults (in LDC's distribution system);

- Certain abnormal system conditions such as over / under voltage, over / under frequency, open phase(s);
- Islanding

Document Number:

, Rev.____

• Include a tripping matrix or similar information in the document.

Note: EG shall install utility grade relays for the interface protection. The protection design shall incorporate facilities for testing and calibrating the relays by secondary injection.

Please do not feel inhibited by the space provided here. Use as much space and as many additional sheets as are required to describe how the Generator protection will deal with faults, outages, disturbances or other events on the distribution system and for the generator itself.

Protective Device	Range of Available Settings	Trip Time	Trip Set Point	Describe operation for disconnecting the generator or inverter in the event of a distribution system outage	Describe operation for disconnecting the generator or inverter in the event of a distribution system short circuit (three phase and single phase to ground)
27 Phase Undervoltage Instantaneous					
27 Phase Undervoltage					
50 Phase					
Instantaneous Overcurrent					
50Gground					
Instantaneous Overcurrent:					
51 Phase Time Overcurrent					
51G Ground Time Overcurrent					
59 Phase Overvoltage Instantaneous					
59 Phase Overvoltage					
81 Under Frequency					
81 Over Frequency 87 Transformer Differential					
Other					

9. Connection and Operation Information

- a. Synchronizing and paralleling scheme / procedure
- b. The generator is designed with auto-connection scheme

_____Doc. / Dwg. No.

10. Document List

Item No.	Description	Reference No.	No. of Pages
1			
2			
3			
4			
5 6			
6			
7			
8 9			
9			
10			
11			
12			
13			
14			
15			
16 17			
17			
18			
19			
20 21			
21			
22			
23			
24			
25			
26			
27			
28 29			
29			
30			

11. Drawing List

ltem No.	Description	Reference No.	No. of Pages
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

12. Other Comments, Specifications and Exceptions (attach additional sheets if needed)

13. Applicant and Project Design / Engineering Signature

To the best of my knowledge, all the information provided in this Application Form is complete and correct.

Applicant Signature

Project Design / Engineering

Date

Date

 Return this form to: Oakville Hydro, P.O Box 1900, 861 Redwood Square Oakville ON L6J 5E3 Attn: Embedded Generation Contact c/o Engineering Dept. E mail: <u>engineering@oakvillehydro.com</u> Phone: 905-825-9400 Ext. 2266 Fax: 905-825-5830

Part B

LDC Supplemental Information

1.	LDC Name:	Oakville Hydro
	Contact Person:	Embedded Generation Contact c/0 Engineering Department
Mailing Address:		P.O. Box 1900 Oakville ON L6J 5E3
	Telephone: Fax: E-mail:	905-825-9400 X 2266 905-825-5830 engineering@oakvillehydro.com

2. Feeder Details:

Provide details of the distribution feeder to which the proposed EG facility is to be connected.

Feeder Name:
Hydro One Transformer Station Name:
Feeder Conductor size and configuration (3 wire or 4 wire):
Feeder Max Load (Ampere):
Feeder Minimum Load (Ampere):
[Note: Feeder maximum/minimum load is the recorded maximum/minimum load of the feeder for
the last two years]
Any other generator connected on the feeder Yes No (Provide details below)
Total number of Generator customers on the feeder (other than the proposed generator)
Number of units Total Capacity: kW kVA

3. Provide LDC Connection Impact Assessment of the EG facility up to Hydro One TS

4. Load information

Maximum load of the facility	kVA	kW
Maximum load current (referred to the nominal voltage		
at the connection point to Hydro One system)		A
Maximum inrush current (referred to the nominal voltage		
at the connection point to Hydro One system)		A

Expected:	Total Generation (a)		Total Internal Consumption Oakville Hydro		Total Output (To Hydro One Transmission Station) (a-b)*	
	kWh	Peak kW	kWh	Peak kW	kWh	Peak kW
January						
February						
March						
April						
Мау						
June						
July						
August						
September						
October						
November						
December						

5. Expected Monthly Generation, Consumption and Output From the Facility:

* This value would be negative when the generators are not in operation or when the internal consumption exceeds generation.